Linear and Combinatorial Optimizations by Estimation of Distribution Algorithms
نویسندگان
چکیده
Estimation of Distribution Algorithms (EDAs) is a new area of Evolutionary Computation. In EDAs there is neither crossover nor mutation operators. New population is generated by sampling the probability distribution, which is estimated from a database containing selected individuals of the previous generation. Different approaches have been proposed for the estimation of probability distribution. In this paper we provide a review of different EDA approaches and show how to apply UMDA with Laplace correction to Subset Sum, OneMax function and n-Queen problems of linear and combinatorial optimizations. The experimental results of the three problems comparing the performance of UMDA with that of Genetic Algorithm(GA) are provided. In our experiment UMDA outperforms GA for linear problems.
منابع مشابه
A Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements
This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...
متن کاملReinforcement Learning Estimation of Distribution Algorithm
This paper proposes an algorithm for combinatorial optimizations that uses reinforcement learning and estimation of joint probability distribution of promising solutions to generate a new population of solutions. We call it Reinforcement Learning Estimation of Distribution Algorithm (RELEDA). For the estimation of the joint probability distribution we consider each variable as univariate. Then ...
متن کاملFinding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations
In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002